Speed of Sound Technologies

Mobile Enhancement Experts in Milford CT

55 Woodmont Rd., Milford, CT 203-954-0066
  • Home
  • About Us
  • Services
    • Car Audio
    • Custom Installation
    • Driver Safety
    • Radar/Laser Detectors
    • Remote Starters
    • Truck Accessories
    • Vehicle Security
    • Window Tint
  • Location and Directions
  • Contact Us
  • Facebook
  • Instagram

Product Spotlight: Sony XS-W124GS and XS-W104GS Car Audio Subwoofers

Sony XS-W124GS

Although talking about a trunk full of high-performance subwoofers powered by big amplifiers is fun, Sony knows that many people want a more cost-effective bass upgrade for their cars and trucks. On the heels of their entirely new Mobile ES amplifiers, source units, speakers and subwoofers, Sony has launched the latest iteration of the GS series speakers and subwoofers. This Product Spotlight will look at the 12-inch XS-W124GS and 10-inch XS-W104GS car audio subwoofers.

Features of the Sony XS-W124GS Subwoofer

The 12-inch (30-cm) XS-W124GS and 10-inch (25-cm) XS-W104GS subwoofers feature five-spoke, heavy-gauge stamped steel frames. Each spoke has an embossed element to add stiffness and rigidity. The frames also feature integrated vents below the spider mounting ledge. These vents allow heat to escape from the voice coil and motor assembly and prevent pressure from building up in the spider at high excursion levels. This design feature offers direct benefits regarding increased power handling, reduced power compression and improved linearity.

The motor assembly at the base of the chassis features a pair of ferrite magnets for good efficiency. The T-yoke has a cooling vent in the center, serving the same purposes as the vents in the frame. Heat can escape from the motor, and pressure won’t build up under the dust cap. The result is an additional reduction in thermal compression and reduced distortion at high volume levels.

Sony XS-W124GS
A five-spoke, reinforced steel chassis is a rigid platform for the Sony XS-W124GS 12-inch and XS-W105GS 10-inch subwoofers.

Each subwoofer features a pair of progressive-rate spiders attached to the cone assembly to the basket. These spiders are a feature that Sony has brought from the Mobile ES drivers. The spiders provide the necessary cone control and compliance while keeping everything centered. Sony chose moderately stiff spiders to give the drivers a higher Qts value, which translates to improved output efficiency. Tinsel leads are sewn to the spider so they won’t hit the cone and cause unwanted noises at high output levels.

Sony XS-W124GS
The new GS-Series subwoofers feature technologies previously developed for the premium Mobile ES drivers that improve performance and reliability.

Sony GS Series Subwoofer Moving Components

Both GS series subwoofers feature a rigid paper cone bonded to the voice coil former. You can see in the cutaway image that the upper spider has a reinforcing collar at the base of the cone that strengthens the joint to the voice coil former and spider to improve reliability. A full-size parabolic dust cap made from injection-molded polypropylene attaches to the surround to form the cone assembly’s face. A rubber surround serves as the upper compliance for the woofer cone. Rubber lasts much longer than foam so these woofers will sound great in your car or truck for many years. A custom-tooled trim ring adorns the outer edge of the subwoofer to give it a tidy appearance.

Sony XS-W124GS
The polypropylene dust cap and custom trim ring give the XS-W124GS a classy, clean appearance.

XS-W124GS Physical Dimensions and Driver Specifications

The XS-W124GS subwoofer has an outside diameter of 13 1/8” (332 cm) and requires a mounting hole with a diameter of 11 1/8” (280 cm). The mounting depth is 5 3/4” (143.4 cm), but your installer will want to leave some room for the vent in the T-yoke. Sony rates the XS-W124GS as capable of handling 300 watts of power using the IEC 60286-5 standard and 420 watts using the ANSI/CTA-2031 standard. Peak power handling is 1,800 watts.

Regarding Thiele/Small parameters, the driver has a resonant frequency of 31.9 ohms, an equivalent compliance value (Vas) of 49.194 liters and a Total Q (Qts) of 0.724. As mentioned, the moderately high Q-value will help increase efficiency and output. Suggested enclosures are 0.91 cubic foot for a sealed design and 1.16 cubic feet tuned to 37 hertz for bass reflex applications. The graph below shows the predicted free-field response of the two enclosures, with the driver receiving 420 watts of power.

Sony XS-W124GS
Predicted free-field output at 420 watts: yellow, 0.91 ft3 sealed; red, 1.16 ft3 @ 37 hertz.

XS-W104GS Physical Dimensions and Driver Specifications

The 10-inch XS-W104GS has an outer diameter of 11 inches (279 mm), requires a mounting hole with a diameter of 9 1/4 inches (234 mm) and requires 5 1/8 inches (129.8 mm) of depth. Rated power handling is 300 watts continuous and 350 watts using the ANSI/CTA-2031 standard. Peak power handling is 1,500 watts.

The 10-inch subwoofer has an Fs of 30.9 hertz, an equivalence compliance of 36.47 liters and a Total Q of 0.505. By way of enclosures, Sony suggests an acoustic suspension design with a volume of 0.88 cubic foot or a bass reflex enclosure with a volume of 0.91 cubic foot tuned to 38 hertz. Given the similarity in suggested enclosure volumes, we’d go with the bass reflex design and enjoy the increased efficiency.

Sony XS-W124GS

Sony backs the new 10- and 12-inch GS series subwoofers with a three-year warranty against manufacturing defects and workmanship issues. This generous warranty doesn’t mean you can hook one to a 1,000-watt amp or clip the daylights out of a 400-watt amp and melt the voice coil, then expect to get a new subwoofer.

Upgrade Your Car Audio System with Sony GS series Subwoofers

If you’re looking for an affordable, high-quality subwoofer from a company that stands behind its products, drop into a local authorized Sony car audio retailer today. Ask about the new GS series subwoofers like the XS-W124GS we looked at here. They can match the driver to an enclosure and suggest an amplifier that will perform great. Adding bass to your car stereo is one of the best upgrades you can make. With the Sony GS subwoofers, great sound doesn’t have to cost a small fortune. You can find an authorized Sony Car Audio retailer near you using their dealer locator tool. Also, follow Sony on Facebook to stay up-to-date with their latest product releases.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, PRODUCTS, RESOURCE LIBRARY Tagged With: Sony

OEM Sound System Measurements for Audio System Upgrades

OEM Sound System MeasurementsUpgrading a factory audio system is not as easy as it used to be. In the late 1990s and early 2000s, connecting an amplifier and a new set of speakers to a factory source unit would yield impressive, if not amazing, results. As automobile manufacturers put more focus on the performance of factory-installed sound systems, digital signal processing (DSP) became more and more prevalent. Equalization and signal delay built into factory source units and amplifiers allow inexpensive speakers to sound acceptable. This tuning works well for such speakers, but not for a set of premium aftermarket speakers. In the past few years, it has become common practice for reputable mobile electronics retailers to perform a series of oem sound system measurements in a vehicle we haven’t worked on before to ensure we understand how the factory entertainment system functions. The results of the measurements will determine the best path to upgrading the performance of the audio system.

Measure Twice, Cut Once

What do we measure, you ask? We need to quantify three items before a system upgrade can be discussed.

OEM Sound System MeasurementsThe first is frequency response. We need to know if the signal coming from the factory radio or amplifier has been equalized or filtered in any way. Equalization can help improve the performance of inexpensive speakers and compensate for the acoustic characteristics of your vehicle.

The second is voltage. If you have a high-power factory amplifier, then the interface we choose for your system has to be able to handle all of the voltage the amp can produce. Not knowing how much voltage is present in the speaker wires can lead to a system design that distorts at high volumes. This distortion will damage speakers.

OEM Sound System MeasurementsThe last thing our shop will want to analyze is the type of signal present. In most cases, the output of the amplifier is a BTL (Bridge-Tied Load), though some are single-ended. There is no right or wrong type of signal, but the information is required to ensure that they will use the appropriate interface solution or amplifier.

Depending on the vehicle and complexity of the factory sound system, we may have to complete several other tests. Signal routing tests are critical, especially if there is a center channel in the vehicle. Chimes, navigation prompts, parking sensors, up-mixers, active noise cancellation and systems that inject “engine noises” into the audio path have to be taken into account before the system design is complete.

What if We Do Not Measure Your System?

Imagine that you want to improve the sound in your audio system. You go to a car stereo shop and buy an amp and a set of speakers, determined to install them yourself to save some money. Even worse, you want to try to save a few more bucks, so you buy the equipment online and have it shipped to your house. Saturday rolls around, and you tear into your vehicle. You run wires to the battery and try to connect to the factory amp. After an hour or two in forums or Facebook groups, you think you have finally connected to the right wires. When you turn the system on, it sounds dull and lifeless.

What happened?

Many factory amplifiers have dedicated outputs for tweeters and midrange drivers. Connecting to one or the other limits how much information goes to your new speakers. Working with an experienced mobile electronics retailer helps you eliminate situations like these. A retailer that doesn’t already have the information can measure the response of each channel of the factory source unit or amplifier and provide a way to manage work with that information.

OEM Sound System MeasurementsA more-typical result is that the high-frequency output from the new speakers is overwhelming. Many factory audio systems use a woofer in the door and a small midrange in the dash. These tweeterless factory systems require a moderate amount of high-frequency emphasis to sound acceptable. When you add a tweeter that can do a good job of reproducing these frequencies, the boost inherent to the system becomes overwhelming. You may be able to turn down the treble control on the radio, but it’s likely that the adjustment only compensates for the highest of frequencies, leaving you with an annoying frequency response bump around 4 or 5 kHz.

What We Do with the OEM Sound System Measurements

After the measurements are complete, our shop can recommend a solution to help ensure the success of your new system. If you luck out and have a simple factory source unit, you may only need a voltage adapter, commonly called a line output converter, to send an appropriate signal to your amplifier.

If a large amount of equalization is present from the factory amplifier, then an equalizer or digital signal processor may be adequate to compensate for the factory tuning. A calibrated microphone and audio analysis equipment is required to set up the new system. These devices are expensive, and it takes time to learn how to use them correctly to achieve acceptable results.

OEM Sound System Measurements
The AudioControl DM-810 can be used to tame factory signal problems.

If you have a factory amplifier that includes crossovers or time alignment, then your interface options narrow. Several system integration processors on the market can automatically undo equalization and time alignment, then recombine signals from the subwoofer, midbass, midrange and tweeter outputs. There are also integration modules that will replace your factory amplifier and provide connections that will feed a signal directly to your new amplifier. Unfortunately for the Do-It-Yourselfer, these amplifier replacement modules need to be programmed for the year, make, model and trim level of your vehicle. This configuration process is not something that you can do at home.

Inquiring Minds Want to Know

Performing OEM system measurements are like preparing to have a cavity filled. Before your dentist starts grinding or drilling, he or she will take a series of X-rays so that they know exactly what they are dealing with. The same philosophy applies to constructing a subwoofer enclosure. You’d never see someone start cutting wood without having measured the car accurately.

When it is time to upgrade your factory audio system, visit your local mobile electronics specialist retailer. Ask if they know how your factory audio system is configured in terms of signal processing. If they don’t know, find out whether they have the equipment to measure the factory audio signals in your vehicle. Once you are comfortable with their level of expertise, you can enjoy the process of designing a fantastic sound system for your vehicle. You will be thrilled with the results!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Definitions: Speaker Parameters

Speaker ParametersThe adage that someone could write a book about a subject certainly holds true when it comes to a discussion of loudspeakers and their parameters. In fact, there are dozens of great books already available about the subject. This article provides an overview of some of the most commonly discussed speaker parameters.

What are Speaker Parameters?

Speaker parameters, often called Thiele/Small parameters, are a set of electromechanical measurements that can be used to define the low-frequency performance of a transducer. Using these parameters and a series of calculations, your installer can predict the performance of that speaker in an enclosure.

What Can We Determine from these Parameters?

Speaker Parameters
T/S Parameters can be used to determine if speakers will work well in small enclosures.

Perhaps the most important set of calculations we can create is the output of the system. When we discuss the “system,” we are referring to the speaker itself and the enclosure in which we intend to install the speaker. Every speaker enclosure acts as a high-pass filter and reduces the low-frequency output of the driver. We gain physical power handling in return for this diminished output. Using a set of calculations, we can predict how much low-frequency information the system will produce.

Another important calculation is power handling. As mentioned, we need to control the movement of the speaker cone to prevent distortion and damage. We can predict how much the cone will move for a given amount of power in our test enclosure.

Resonant Frequency of the Speaker – Fs

In terms of analyzing the moving parts of the speaker, we need to know the frequency at which the compliance (springiness) of the spider and the surround combine with the mass of the cone and dust cap to store the most energy. At this frequency, the system alternately stores and subsequently releases the most energy for a given voltage input. If you were to swing a weight on a string suspended from the ceiling, the natural frequency at which it oscillates back and force would be equal to the resonant frequency of a loudspeaker.

Equivalent Compliance Volume – Vas

To understand how stiff the spider and the surround are, we compare them to an amount of air that would exert the same resistance to motion. Because air is easily compressed, a high Vas specification would represent a very softly suspended cone. Conversely, a speaker with a low Vas would have a very stiff suspension.

Electrical Q of the Driver at Fs – Qes

Speaker ParametersUnderstanding the Q (Quality Factor) can be somewhat difficult because it is a dimension-less value. In essence, the Q factor describes the damping characteristic of a resonant system. A higher Q represents less energy loss relative to the total energy stored in a system. A pendulum suspended from a low-friction bearing will have a high Q. That same pendulum, submerged in water, will have a much lower Q. An important consideration is that high-Q systems have less damping and, therefore, vibrate longer. The Electrical Q specification describes how much damping the voice coil and magnet assembly invoke on the moving cone.

As the voice coil moves past the magnet, it produces an electrical current. This current reaches its peak value at the resonant frequency of the driver and counteracts the current being provided by the amplifier. The net result is a significant rise in impedance at the resonant frequency.

Mechanical Q of the Driver at Fs – Qms

Just as the electrical characteristics of a speaker cause an opposition to cone motion, we have a similar effect from the mechanical properties of the speaker. Qms describes the mechanical losses resulting from the spider and the surround. A high Qms value describes lower mechanical losses, while a low Qms value describes higher losses.

Total System Q at Fs – Qts

This unit-less measurement is a mathematical combination of the mechanical and electrical characteristics of the speaker. In simple terms, we calculate Qts by dividing the total stored energy of the speaker by the dissipated energy in the speaker at resonance.

Compliance of the Driver Suspension – Cms

The Cms specification describes the stiffness of the driver suspension in meters per newton. A stiffer suspension will move less distance for a given amount of force applied to it.

Effective Cone Area of the Driver – Sd

Speaker ParametersThis parameter describes the effective “size” of our speaker. We all realize that the cone will move air for us, but we also have to take into account the addition of the surround. It is commonly accepted that we can use a value of half the surround as contributing to the output of the driver.

Mass of the Cone and Moving Parts – Mms

The Mms specification describes the mass of the speaker cone and part of the spider and surround. Unlike the Mmd specification, Mms includes the acoustic load caused by the air in contact with the cone. In most cases, the values are similar, but as the surface area of the cone increases, so too does the value of Mms, relative to Mmd.

Maximum Excursion Level – Xmax

This parameter is frequently misinterpreted as being the defining factor in the distance a speaker cone can move. Early calculations used a formula that subtracted the height of the voice coil winding from the height of the magnetic gap, then divided by 2. This calculation describes how far the speaker can move before the winding comes out of the gap.

Subsequent investigation shows that non-linear behavior elsewhere in the driver design could have a larger influence on the motion limits of the cone. This suggests that Xmax should be the one-way excursion distance that represents a distortion level of 10%. This performance-oriented specification is far more indicative of the useful operating range of a driver, but is much harder to ascertain.

Additional Parameters

Speaker ParametersIn this article, we only describe the basic parameters that are commonly used in predicting the low-frequency performance of a loudspeaker. Other parameters, such as inductance, become more relevant at higher frequencies. Addition parameters such as Nominal Impedance (Znom), efficiency, sensitivity and the Efficiency Bandwidth Product (EBF) are derived through equations that use the specifications above.

Proper Design Requires Simulation

A woofer in an over-sized enclosure may bottom out and be damaged easily. A midrange driver crammed into a small speaker pod may have a significant frequency response spike and an associated distortion peak. The result is quite unfavorable.

Before you assume a subwoofer or speaker is suitable for the enclosure or mounting location you have chosen, it is worth asking your mobile electronics retailer to perform a simulation to ensure everything will function the way you want. They can work with you to ensure everything will perform optimally, and your system will sound great!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Product Spotlight: Sony XS-162GS and XS-160GS 6.5-inch Speakers

Sony 6.5-inch

You’d think that the Sony product development team would deserve a break after releasing no less than nine new Mobile ES speakers and subwoofers over the past few years. While they might deserve it, they kept up the momentum by redesigning their popular GS-Series speakers. This Product Spotlight will examine Sony’s new XS-162GS component and XS-160GS coaxial 6.5-inch (16-cm) speakers.

Sony XS-162GS 6.5-inch Component Speakers

The XS-162GS is a 6.5-inch (16-cm) component speaker set that includes a pair of 6.5-inch (16-cm) woofers, two 13/16-inch (21-mm) soft dome tweeters, an inline passive crossover for the tweeter for discreet installation, and mounting hardware for the tweeters. The woofers in the set feature a high-quality stamped-steel chassis with a four-spoke design. The rigidity of the design is improved over typical stamped baskets by adding a reinforcing rib down the center of each spoke.

Sony 6.5-inch
The four spokes of the XS-162GS speaker basket feature a reinforcing rib for added strength.

The basket design includes two sets of mounting tabs, making it suitable for both three- and four-position mounting hardware when replacing a factory-installed speaker. The woofers have a total mounting depth of 1 7/8 inches and sit above the mounting surface by 7/16 inch. Your installer will need to leave extra room in front of the driver to ensure that the cone and surround don’t run into the speaker grille or a trim panel in your vehicle.

Sony 6.5-inch
Dimensions of the XS-162GS tweeters and woofers.

Each woofer is based around a composite polypropylene cone that delivers an excellent balance of bass and midrange frequencies. A foam rubber surround at the top edge of the cone features an air-filled matrix structure that’s low in mass while being durable. The result is a reliable and flexible connection that provides good damping characteristics.

The woofers in the XS-162GS set feature a phase plug design that’s a direct descendant of the Mobile ES XS-162ES speakers. The Dynamic Air Diffuser phase plug eliminates the need for a dust cap, which can add high-frequency distortion to the speaker. Further, the exposed ridges provide a significant amount of surface area to help extract heat from the voice coil and motor assembly. Sony uses a progressive-rate spider, another component brought over from the Mobile ES line, at the base of the cone to maximize physical power handling while providing precise compliance for accurate bass performance. A single ferrite magnet serves as the heart of each speaker.

Sony 6.5-inch
The Dynamic Air Diffuser phase plug improves power handling and reduces distortion for clearer sound.

The tweeters in the set feature a silk dome material with a diameter of 13/16 inch (21 millimeters). Each tweeter has a super-efficient neodymium magnet for excellent efficiency. The assembly is housed in a custom-tooled frame with a perforated mesh grille. Sony includes flush, angled and flat surface-mount accessories to optimize the installation. Filtering for the tweeter is handled by a passive crossover in line with the tweeter speaker wires.

Sony 6.5-inch
Sony includes flush, angled and flat surface-mounting hardware for the silk dome tweeters in the XS-162GS set.

The XS-162GS set has a continuous power rating of 45 watts that complies with the CTA-2031 measurement standard. Peak power is 250 watts. Efficiency is 89 dB at 1W/1M with a tolerance of 2 dB SPL. Finally, frequency response is specified as 45 Hz to 24 kHz using the IEC 60268-5 standard.

Sony XS-160GS 6.5-inch Coaxial Speakers

The sister speakers to the above are the XS-160GS 6.5-inch coaxial set. This speaker system includes a pair of two-way coaxial 6.5-inch (16-cm) speakers along with appropriate mounting fasteners. The basket design for the coaxial speakers is the same as those found on the component speaker woofers with seven mounting tabs. The woofer design is the same as the XS-162GS component speakers with a composite polypropylene woofer cone, foam rubber surround and progressive rate spider.

Sony 6.5-inch
The coaxial design of the XS-160GS is a direct descendant of the Mobile ES XS-160ES speakers.

Where the speakers differ is in the tweeters. The top of the Dynamic Air Diffuser post in the driver’s center is home to the 13/16-inch (21-mm) tweeter, with its integrated phase plug built into the mounting assembly. In both instances, the integrated phase plug, another trickle-down technology from the Mobile ES speakers, helps improve tweeter output around the crossover point. This improved midrange output allows Sony to lower the crossover point and reduce directivity issues typical in two-way systems that use a relatively large woofer. These tweeters share the same neodymium magnet design for excellent efficiency and compact dimensions.

All the specifications for the XS-160GS coaxial speakers mimic those of the component speakers with power handling rated at 45 watts continuous and 250 watts peak. Efficiency and frequency response numbers are also the same at 89 dB 1W/1M and 45 hertz to 24 kHz.

Sony 6.5-inch

Environmentally Friendly Packaging

Sony has committed to significantly reducing environmental impact by simplifying the packaging design for the GS speakers. Gone are the fancy full-color graphics, now replaced with single-color line art, reducing the amount of ink by about 90%. The internal packaging is now paper-based, further reducing environmental impact.

Great Sound with a Great Warranty

Sony backs the XS-162GS and XS-160GS speakers with a three-year warranty that covers defects in materials or workmanship during ordinary consumer use. As with all speakers, you’re on your own if you overpower them with a large amplifier or too much distortion and damage them.

We have each set on their way to our labs for a Test Drive Review, so we can share how they perform shortly. In the meantime, if you want a great set of speakers to connect to a factory-installed or aftermarket radio, drop by a local authorized Sony retailer and ask for a demonstration of the new 6.5-inch (16-cm) GS series speakers. You can find an authorized Sony car audio retailer using their dealer locator. For more information about Sony Car Audio products, follow them on Facebook.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, PRODUCTS, RESOURCE LIBRARY Tagged With: Sony

The Benefits of Custom-installed Radar Detectors

Custom-installed RadarIf you are looking for the best defense against police laser and radar guns, speed cameras, and radar-based work zone speed detection systems, then a custom-installed radar detector and laser countermeasure system is the only choice. This article compares the features and performance benefits of a portable radar detection system to one that we integrate into your vehicle.

What is a Radar Detector?

Simply put, a radar detector is a device that includes one or more radio frequency receivers and a computer. The receiver is designed to focus on specific frequencies and report the presence of those signals to the vehicle operator. The goal of the system is to detect radar measurement signals used on vehicles in front of you and provide enough warning so you can slow down to a legal speed and avoid getting a ticket.

Law enforcement agencies in North America use three radar frequencies. X-band operates between 10.5 and 10.55 GHz, K-band operates between 24.05 and 24.25 GHz, and Ka-band operates between 33.4 and 36 GHz.

Why Custom-installed Radar Systems Offer Better Protection

Custom-installed Radar
This front-mount Escort radar receiver offers much higher sensitivity than portable units.

When comparing portable radar detectors to custom-installed systems, the biggest performance benefit comes from the ability to make the radar receiver larger. As with any antenna, more size means more sensitivity. The radar receiver included with a custom-installed detector is typically bigger than an entire portable radar detection device. In AM/FM antennae, a half-wave antenna offers more than twice the sensitivity of a quarter-wave antenna. The benefit to you is that a custom-installed radar detection system can detect weaker signals and provide an earlier warning so you can slow down sooner.

Some systems include separate receivers and amplifiers for the low-frequency X-band and the higher K- and Ka-bands. This configuration allows each antenna to be more sensitive within its specified operating range and requires less signal filtering and amplification.

Many radar systems that integrate with your vehicle include a second high-sensitivity detector for the rear of the car or truck. Many police forces use dash-mounted radar systems that function while the police vehicle is in motion. If an officer is following you, you will want to know if he or she is measuring your vehicle’s speed.

Police Laser and Lidar Systems

Custom-installed RadarMany law enforcement agencies now use laser-based measurement systems. These devices send out a very narrow beam of invisible “light” that pulses in a particular pattern. The laser gun measures how that beam is reflected to calculate the speed of the vehicle it is measuring. The laser works with incredible accuracy. High-quality laser speed detection systems have a beam width of only 30 inches at a range of 1,000 feet and can operate up to 6,000 feet away. They are accurate to within 1 mph and can acquire a reading in as little as 0.33 seconds.

Laser detection systems look for energy between 830 and 945 nanometers and report it to the driver. The problem with laser speed detection is that once the officer has pulled the trigger, he has an accurate reading of your speed. There isn’t any point in slowing down.

Laser Detection versus Laser Defense Systems

A premium portable radar and laser detector that mounts to your windshield can alert you to the use of laser speed measurement. As we mentioned, though, once the officer has a reading, it is too late. Your only hope of avoiding a ticket is to detect beam scatter from another vehicle, then slow down before the police measure your speed.

Custom-installed Radar
Automods mounted these laser shifters close to the license plate for maximum effectiveness.

The number one benefit of a remote mounted detection system is its ability to combat laser or lidar systems. In a laser countermeasure system, there are several compact transceivers mounted near your license plate and headlights – the most frequent target for police radar. When these sensors detect a laser measurement signal, they instantly start to transmit a signal to confuse the radar gun.

The second issue with portable radar and laser detection systems is location. As we mentioned, police target your license plate and headlights because these are reflective, in hopes of getting an accurate reading at long distances. Your portable detector, mounted up high on your windshield, may offer excellent radar detection range, but can miss laser signals altogether due to that height.

Some custom installed radar detectors include laser functionality, and some provide it as an option. Talk to your retailer to ensure you are getting the protection you want.

How to Use a Laser Defense System

If a police officer targets your vehicle with his laser gun and pulls the trigger, he will be expecting a result almost instantly. If your laser defense system prevents him from getting a reading, the officer will quickly realize you are using a countermeasure system. To prevent him from following you for the next 10 miles or until you do something wrong, there is a suggested etiquette to using laser defense.

Custom-installed RadarAs soon as your laser detection system alerts you to the use of a radar gun, slow down quickly. Obviously, slamming on the brakes will attract attention. Smooth and steady deceleration is the ideal. As soon as you are at a legal speed, cancel the laser countermeasure system and let the officer take a reading. If that is executed smoothly, the officer will leave you alone and move on to measuring the vehicle behind you.

The only defense against police laser/lidar is a custom-installed laser countermeasure system.

Reduce the Clutter

Custom-installed Radar
The two small LED lights between the gauges alert the driver of threats.

If you are like us, then you hate clutter in your vehicle. There are some nice mounting brackets for portable radar detections, but they still detract from the appearance of your vehicle. Depending on the brand of custom-installed radar detection systems, there may be a small control panel that we can mold into your dash or center console, or no visible control panel at all. In these “invisible” systems, all of the alerts are handled with audible warnings and a pair of small LEDs. Eliminating connections to your cigarette lighter plug and suction cup marks on your windshield keeps your vehicle looking organized and tidy.

From a safety perspective, having a radar detector on your windshield will block some of your vision. The percentage of windshield area that a portable radar detector takes up is small, but every square inch counts when it comes to safe driving.

Protection against Theft

Dash and windshield mounted radar detectors are prime targets for thieves. The complexity and distributed design of custom-installed radar detectors make them too much hassle to steal. Even if thieves were to break into your vehicle, they would only be able to get a few parts of the system. The result is that there is no resale value, so they leave these systems alone.

Complete Vehicle Integration

Custom-installed Radar
Automods uses best-practices in their radar and laser installations.

Depending on the features and complexity of a remote-mount radar detector system, there could be as few as three components, or more than a dozen modules and sensors. We mount each component in a location that ensures reliable operation and protection against damage. We route the system wiring with factory harnesses and protect it with split loom or cloth tape – whichever best matches the OEM style of your vehicle. We make the electrical connections mechanically and electrically secure so they will function flawlessly for years.

When we install a radar detector and laser defense system in your vehicle, it becomes an integral part of your car or truck. You will never forget to bring it with you. You will never forget to turn it on. It is always ready to protect you.

Visit Your Local Mobile Enhancement Retailer Today

If you are looking for the best defense against police laser/lidar and radar guns, the only choice is a custom-installed radar detector system. Most systems are nearly invisible once installed, and the laser shifter/defuser modules can be integrated into your vehicle cosmetics beautifully. Visit your local mobile enhancement retailer today to discuss the options for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Radar Detectors, RESOURCE LIBRARY

  • « Previous Page
  • 1
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • …
  • 31
  • Next Page »

Recent Articles

Classic Car Audio

7 things to Consider When Improving Your Classic Car Audio

June 1, 2025 

You have worked long and hard to get your pride and joy rebuilt. The paint is buttery smooth, the engine purrs like a kitten, and the interior smells of fresh carpet and leather. … [Read More...]

DroneMobile XC Connected Dashcam Security System

Product Spotlight: DroneMobile XC Connected Dashcam Security System

May 26, 2025 

Thieves frequently target vehicles from Hyundai, Kia, Toyota, Lexus, RAM, Chevrolet, and Honda. These vehicles are often stolen for their parts or exported overseas. … [Read More...]

Compustar 2WG17 Remote Kit

Product Spotlight: Compustar 2WG17 Remote Kit

May 19, 2025 

Compustar was one of the first brands to allow consumers to choose a remote control package to accompany their remote start controller. Previously, we looked at flagship-level … [Read More...]

Factory Source Unit

To Get Better Sound, Do I Need to Replace My Factory Source Unit?

May 4, 2025 

Not all that long ago, upgrading the performance of your car audio system required that you replace the factory source unit. The industry had dozens of premium CD receivers with … [Read More...]

Testimonials

Very Friendly Staff

Very friendly staff, knowledgeable group . Needed help on my remote starter, they got me back up and running in no time . They also do amazing tint jobs!!

I recommend then to everyone!

Super great place to get lots of custom things done. Very nice, very knowledgeable and very fare prices. I recommend to everyone I know.

Will be going back for sure!

Very happy with how the tint came out. Professional and friendly. Will be going back for sure.

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location

55 Woodmont Road, Milford, CT 06460

Get Directions to Speed of Sound Technologies

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Custom Installation
  • Driver Safety
  • Radar/Laser Detectors
  • Remote Starters
  • Truck Accessories
  • Vehicle Security
  • Window Tint

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 6:00 pm
Saturday9:00 am – 5:00 pm

Closed
Sunday

Copyright © 2025 Speed of Sound Technologies · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...