Speed of Sound Technologies

Mobile Enhancement Experts in Milford CT

55 Woodmont Rd., Milford, CT 203-954-0066
  • Home
  • About Us
  • Services
    • Car Audio
    • Custom Installation
    • Driver Safety
    • Radar/Laser Detectors
    • Remote Starters
    • Truck Accessories
    • Vehicle Security
    • Window Tint
  • Location and Directions
  • Contact Us
  • Facebook
  • Instagram

Modern Navigation Systems for Today’s Vehicles

NavigationPaper maps used to be the only way of planning route navigation. Before you, or perhaps your parents, set out on vacation, you would pick up maps for each state or province you planned to drive through, lay them out on the kitchen or dining room table, and highlight the route to take.

The problem with maps is that someone has to read them, and trying to read a map while driving is quite dangerous. Automakers realized that maybe technology could be used to make driving safer. This concept was the birth of the navigation system.

Through the 1980s, Toyota and Mazda worked on several different navigation systems for their cars. Some of these early navigation systems used digitized paper maps. In the 1990s, Mazda introduced the first GPS-based navigation system. Nowadays, most vehicles sold in North America have the option of navigation.

Navigation System Hardware

NavigationModern navigation systems have four key components. The first is a computer. This computer runs the navigation software that plans the route you have requested, tells you when to turn and advises you when you arrive. The second key component is the maps used with the navigation software. Two companies offer these maps, which are licensed to the end-user. The third component is the GPS receiver module and antenna. The GPS receiver lets the navigation system know where you are, and where you are headed. Finally, there is an interface. The interface is usually a touchscreen of some kind. The interface displays the maps and accepts the input of information to plan the route. Information can be typed on a touchscreen or spoken to the software and converted to text.

What is GPS?

NavigationGPS stands for Global Positioning System. The U.S. Department of Defense created the technology in 1975 and it was fully functional by 1995. The purpose of the system was to provide accurate location, speed and altitude data anywhere on the planet. The GPS system comprises about 30 satellites that orbit the Earth. Each one transmits a uniquely coded signal with a very accurate time stamp. The GPS receiver can, once it has acquired signals from several satellites, triangulate its location by comparing the difference in arrival time of each signal. The GPS system most of us are used to is called Navstar, and it is operated and maintained by the U.S. Air Force Space Command.

Many consumers refer to a Portable Navigation System (PNS) or in-dash navigation system as a GPS. While this term has become accepted, GPS is just one key component of a navigation system.

Not surprisingly, there is more than one GPS system in use globally. Russia operates a system called GLONASS, India has IRNSS, the Chinese have BeiDou-2 and the Europeans have Galileo. Some GPS receivers can capture information from multiple systems to improve accuracy. An example would be a radio-controlled camera drone – these use GLONASS and Navstar to provide more resolution regarding their position.

The signal sent to the navigation computer by the navigation receiver includes the longitude, latitude, heading (the direction you are traveling), altitude, velocity and the current time.

What are Navigation Maps?

Knowing where you are on the planet is great. The real key to a navigation system is its maps. Maps are available from one of two companies: TomTom, which purchased TeleAtlas in 2007, and Nokia, which purchased Navteq in 2008.

NavigationMaps are databases of roads stored as vectors. A vector is a line between two points. In the case of navigation road maps, the end points of the lines (or roads) are GPS coordinates. Most navigation map information contains additional information such as house numbers. If you have every wondered why some house or building addresses are off by a little bit, the reason is based on how addresses are stored. At one end of a street, or section of road, the map data contains the beginning house number. The other end of the street has the ending house number. Navigation systems spread out the difference between the two house numbers evenly along the length of the street. This predicted location does not always match reality because of geography – or pure randomness, based on the whim of the local municipal building department.

Navigation systems are useless without maps. They couldn’t plan routes or give directions. You are, quite literally, at the mercy of the quality and accuracy of the maps you own.

Working in conjunction with the map database is a Points of Interest (also known as POI) database. A POI database contains information about businesses and landmarks, and often includes a phone number. Depending on your navigation system, you may have as few as 1.5 million points of interest or as many as 11 million. The manufacturer decides how much they are willing to spend on this information. If your navigation system can search for gas stations, hotels, restaurants or hospitals, then the map data includes a POI database.

Some of the very first navigation systems used analog tape to store map and POI data. Yes – analog, magnetic tape! From that point, we moved to CD-ROM, DVD-ROM, hard disk drives and flash memory. The latest systems are based on smartphones and don’t have the map data permanently stored onboard – it’s all downloaded over the air, using a cellular connection in real time.

Modern Navigation System Features

NavigationModern navigation systems are amazing tools to help you travel safely and efficiently. These systems use extremely complex and proprietary algorithms to decide the best route between the starting and ending points of your route. The most basic of navigation software takes into consideration the size of the road (number of lanes and, if available, speed limit) and the direction of the turns you may have to make to complete the route. Navigation software companies are very protective of their route creation algorithms.

Modern navigation systems can accept real-time information to make route planning more accurate and efficient. The first upgrade was including traffic flow information. Many systems used FM antennae to capture traffic flow information that was broadcast in major urban areas. This technology is called RDS-TMC traffic, since the information was coded into the same frequency space as FM radio RDS information. Newer systems capture this traffic flow and accident information through the SiriusXM receiver. You do need a subscription to SiriusXM Traffic and, of course, supporting hardware in your vehicle to makes this work.

Apple CarPlay and Android Auto

If you have a vehicle with Apple CarPlay or Android Auto, your smartphone becomes an integral part of your navigation solution. Apple or Google stores map information and downloads it in real time through your smartphone’s data plan. The beauty of this solution is that you never, ever have to pay for map updates – the information is always being updated.

NavigationApple Maps and Google Maps both offer turn-by-turn navigation solutions that use each brand’s advanced voice recognition software. All you have to do is press a button and ask the system to take you to an address.

CarPlay and Android Auto navigation has the benefit of being able to acquire Point of Interest information directly from the Internet. If a new company opens and registers itself with Apple and Google, you can search for it right away.

One drawback of CarPlay and Android Auto is that the maps aren’t stored on the phone or in the vehicle. If you are traveling to another country, your cellular provider will charge roaming fees. (You can get roaming data plans to help minimize the cost, so that’s not a huge deal, but it has to be considered before you buy.) Another consideration is that these systems are constantly downloading map information. If you happen to have a cellular data plan with very limited bandwidth, this could eventually cost some money in data overage charges. These are not show-stoppers, just considerations.

Google Waze

Navigation-8.pngOne very popular navigation application used by people who live in high-traffic areas like Los Angeles, Toronto, San Francisco, Seattle, Honolulu, New Orleans or Chicago is called Waze. This application is available for iPhone and Android phones for free. The beauty of Waze is that other users provide traffic flow information, including detours, accidents and warnings for potholes, weather or even animals on the road. Waze offers crowd-sourced traffic information at its finest. Google purchased Waze in June of 2013 for $1.3 billion. If you run the risk of getting stuck in a traffic jam, try Waze; it’s quite impressive.

Using any navigation solution has its perils. If your co-pilot is reading directions from a paper map, or you are trying to drive while listening to voice prompts from a navigation system, there is always the risk of making an error while turning, merging or exiting. Always be careful when navigating and heed the rules of the road at all times.

If you are in the market for a navigation solution for your vehicle, visit your local mobile electronics specialist. They have many different solutions depending on the vehicle you drive. Some systems replace the factory radio, some work with it and some operate separately from it. They can show you the options for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, Navigation, RESOURCE LIBRARY

What Is A Soundstage And Where Can I Buy One?

SoundstageWhen it comes to listening to music, there seem to be two kinds of listeners in the context of “where the sound comes from.” Some people want to be enveloped by the music. They want to feel like they are in the very middle of the performance, with sound all around them. This style is sort of like listening to a set of headphones. The other listener wants their music to come from in front of them. This “forward-facing soundstage” style is more like listening to a home audio system or a movie theater.

There is no right or wrong – everyone has their preference. But high-end mobile audio systems are, for the most part, designed for the latter – people who want to feel as if they are sitting in the middle of the audience at an amazing concert.

There is also that guy in the Monte Carlo with the 6x9s in open-backed boxes in the rear window. He, thankfully, is gone now. If you happen to see him, cut off his mullet and drag him to a car stereo shop, please, and thanks!

Imagining a Soundstage

This article talks about an imaginary soundstage. But what in the world is a soundstage?

Soundstage
An overhead view of the described stage.

Imagine a band set up on a stage 20 feet in front of you. Let’s say there is a lead singer in the center of the stage, right at the forward edge. Behind him or her, someone is at a grand piano. To the right of the piano is a big drum kit with several cymbals all around the performer. In front of the drummer, to the right of the lead singer, is someone sitting on a stool with an upright bass. To the left of the singer is someone with a trombone. To the left of them is someone with a trumpet. Behind the trumpet player, to the left of the pianist, is a xylophone player. The xylophone player is also going to sing some backing vocals. So is the drummer.

Imagine those different positions for a second. They not only range laterally across the soundstage, but there is depth to their locations.

This unique and perhaps rare grouping of performers represents all the source aspects of your soundstage, but their locations don’t represent the limits of that stage. Let’s consider the venue in our analogy as well. A medium-size club of some sort. Wooden walls, a hard floor and a high ceiling. The room where we listen to our performance is a huge contributing factor to the sound of the performers. (If you ever have the chance to visit the Ryman Auditorium in Nashville, TN, do it! Even if you aren’t into country music, this venue is amazing.)

So, here we have our performers and our venue. We are going sit about 20 feet back from the center of the stage and let the show unfold for us. Our experience as the performers play defines the soundstage. We hear each instrument in its position on the soundstage. We also hear the sound of those instruments reflecting off the side walls of the club.

To reproduce the performance accurately, we need to reproduce those reflections as well. Capturing those reflections requires a specific recording style – so it may, or may not, happen. A recording of a live performance is much more likely to have that information than a studio recording.

Our Auditorium on the Road

SoundstageThere it is. The space in front of us, where the music is coming from, is our soundstage. If you get a chance to listen to your favorite recordings on a high-end home audio system, and you choose to sit equidistant from the speakers, then you probably have experienced a fairly accurate soundstage. The perceived location of where our music is coming from regarding height, width and depth is our soundstage.

Sadly, most mobile audio systems can’t or don’t recreate this very well. It’s a shame, because experiencing each performer in their correct location, including depth (one performer behind another) brings an amazing level of realism to your music. The good news: Recreating a soundstage in your car isn’t all that hard.

If you let the salesperson and installer at your local mobile electronics retailer know that you want a soundstage in your vehicle, they can design your system that way. Let’s assume we are building a whole new system from scratch, just to make this easier.

The first step will be to select a set of good-quality speakers for the front of your car. You mostly likely will want a component set unless you can fit a large (5-1/4” or larger) coaxial on the dash. Since most vehicles have the front speakers down low in the door, using a component set will let the shop you use install the tweeters up high and far forward. If the tweeters play low enough, say 2.5 kHz, then a skilled tuner can make the sound appear to come from the dash level, rather than the floor.

Soundstage
Tuning software such as this from Audison allows detailed control of the audio.

The next step to creating a soundstage is to have a way to tune those speakers. We aren’t talking about amplifier gain settings. We need control over equalization, output level and signal delay. Because the driver of the vehicle sits closer to the left speakers, those will appear to be louder, and we will hear the sound being reproduced by them sooner than the sound from the other side of the car. The simplest of systems with great soundstages will have either a source unit or external DSP unit with three-way crossovers, stereo equalizers and the ability to delay the signal going to each speaker.

With the above tools in place, your installer can set up the system so the sound coming from each speaker in the front of the car – from both midrange drivers and both tweeters – arrives at the listening position at the same time. Your installer will also tune the system so the left side of the car sounds the same as the right side. This tuning helps to eliminate frequency steering. Frequency steering causes the source location of a sound to move around the soundstage depending on frequency.

Next-level Performance

The above example offers a great two-way front stage. We would, of course, assume you are going to use a subwoofer in the system. A set of door speakers, even great ones, won’t be able to reproduce the bottom octave of the audio spectrum with any authority. With the sub in the system, it’s now called a three-way system. What if you want the system to sound even more realistic in terms of the placement of voices on the soundstage?

One way to improve your soundstage is to install a set of midrange drivers up high and far forward in the car. The A-pillars, dash speaker locations, and high and forward in the door are common midrange locations. If you can get a midrange that will play down to at least 300 Hz, the ability to solidify the dash as the source of the sound becomes much better. Rather than having deeper voices coming from lower in the door, now they will be focus better across the dash.

Another advantage of a three-way speaker set is that the woofer is often capable of producing slightly deeper midbass than an equivalent two-way speaker set.

Soundstage
4-way systems, such as the one in this purpose-built Civic can sound incredible.

The four-way system is going to cost more. You need two more speakers, two more amplifier channels, somewhere to mount those new speakers and probably another 30 to 60 minutes worth of system tuning. But yes, it’s totally worth it.

In these systems, the focus of performance is tailored to the driver’s seat alone. The passenger isn’t going to enjoy the same experience. That said, if you and your co-pilot both want to enjoy equally amazing audio, there are solutions in the works. By the spring or summer of 2017, everyone in the car will be able to enjoy an amazingly realistic soundstage across the dash.

This article provides an overview of the system design requirements for creating a system with a good soundstage. There are a lot of variables and hundreds, if not thousands, of options regarding how to execute to fine-tune the concept.

This is where your experienced mobile electronics retailer comes in. Use their knowledge, skill and experience to help bring your desire for musical realism to reality. If you’re out cruising around, drop into your local mobile electronics specialist retailer and ask if they have a demo vehicle that produces a great soundstage. If you have never experienced one, you will be blown away! Best Car Audio will not be held responsible for the ensuing audio addiction.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Product Spotlight: ARC Audio MOTO CX6 Motorcycle Speakers

Motorcycle Speaker

ARC Audio has offered class-leading amplifier and speaker upgrade solutions for Harley-Davidson touring motorcycles for more than a decade. Their experience and obsession with sound quality have led them to create a new generation of high-performance speakers that balance output capability and efficiency, bass extension and accuracy. The latest evolution of their motorcycle and powersports speaker line is the new MOTO CX6 6.5-inch coaxial-style speaker set. Based on a totally reimagined design, these new speakers sound better, handle more power and shrug off water, dust and debris better than their predecessors. If that seems like too much to ask, you might be in for a surprise.

ARC Audio MOTO CX6 Basket and Motor Features

The MOTO CX6 is technically a component speaker set with the tweeter mounted on a bridge above the woofer. The benefit of this design is a significant increase in woofer cone area that improves efficiency and enhances low-frequency output capabilities. The elimination of the second weather-resistant surround around a coaxial pole piece provides an additional improvement in sound quality.

Motorcycle Speaker
The tweeter on the ARC Audio CX6 is suspended above the woofer to optimize midrange output efficiency.

The CX6 speakers are based on a custom-tooled, die-cast aluminum chassis design. The thick four-spoke basket features eight large cooling vents under the spider mounting plateau to help heat from the voice coil escape. The spider plateau was designed at the correct height above the top plate to eliminate the need for a cupped spider that would be detrimental to the speaker’s performance.

The speaker chassis includes four mounting holes, and thick foam gaskets are included on the rear of the basket to seal against the speaker pods found in newer Harley-Davidson Road Glide and Street Glide motorcycles. It’s worth noting, the significant excursion capability of the new woofer design, combined with the heavy-duty steel tweeter bridge, requires the use of Boom 2 bumped grilles or the forthcoming MOTO SG2014+ replacement grille kit.

The motor is based around a Y35A-grade ferrite magnet, and the top plate is CNC-cut hot rolled steel. The T-yoke features an integrated shorting ring. Most listeners will perceive this upgrade as delivering a smoother and more accurate midrange response. For those who are technically minded, the shorting ring helps prevent the current flowing through the voice coil from creating a secondary magnetic field in the motor that opposes the magnetic field created by the magnet. Did you follow that? Either way, it’s an important feature and one that offers audible performance benefits.

Motorcycle Speaker
The CX6 features a die-cast aluminum basket, and the tweeter is filtered with a high-performance crossover for great sound and high volume levels.

Cone and Suspension Components

The woofer cones are based on an injection-molded polypropylene doped with carbon to increase thermal stability and improve the damping characteristics. The upper edge of the cone is attached to the basket with an inverted low-shore rubber surround. A large dust cap covers the bond between the cone and the 1.25-inch glass fiber voice coil former. The large diameter of the voice coil helps to improve thermal power handling by increasing its total surface area. Likewise, the choice of a ferrite magnet allows it to act as a large-mass thermal heat sink to wick heat away from the voice coil assembly. The result is a speaker design that can easily handle eight hours at its full rated 110-watt power level.

The spider is made of Nomex and features a constant wave progressive design that prevents the assembly from bottoming out at extreme power levels. The spider, coil former and cone are bonded together with a high-temperature adhesive rated for over 230 degrees C (440+ F) to ensure reliability.

Motorcycle Speaker
Cooling and power handling are improved thanks to a large-diameter voice coil and venting under the spider mounting plateau.

High-Performance Tweeter Delivers Amazing Clarity

The tweeter suspended above the woofer is based around a polyetherimide (PEI) and mylar dome damped with Norseal PVC mesh. This unique composite dome design is popular in pro audio compression drivers as it combines strength and damping with heat- and weather-resistance. The tweeter uses a copper voice coil wrapped around a composite Kapton mesh former, and a neodymium slug in the center of the voice coil serves as the motor. The effective diameter of the tweeter is 1 inch, and a hexagonal mesh grille protects it. A high-performance mylar capacitor affixed to the rear of the woofer basket serves as the crossover for the tweeter.

Motorcycle Speaker
The CX6 features a bespoke tweeter diaphragm that balances efficiency with damping for smooth, detailed performance.

Upgrade Your Motorcycle or Powersports Vehicle with the ARC Audio MOTO CX6 Today!

As the first of their next-generation products, the MOTO CX6 replaces the current MOTO 602v2 product. While the 602s were great, the new technologies in the CX6 are worth the change. If you’re searching for a motorcycle speaker that sounds realistic and offers impressive midbass performance while still getting loud, drop by your local authorized ARC Audio retailer and ask about the new MOTO CX6. Be sure to keep up with the latest product releases from ARC Audio by visiting their website, Facebook page, Instagram page and YouTube channel.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, PRODUCTS, RESOURCE LIBRARY Tagged With: ARC Audio

How Car Audio Has Changed Through The Years

Car AudioIf you have been around the mobile electronics industry for more than a decade, then you may have noticed some significant changes. New technologies make our time behind the wheel safer, more entertaining and more productive. Many products offer better performance and efficiency compared to their originals. Innovations and technological advancements let us do things that simply were not feasible decades ago. This article looks at some of the most significant changes that have taken place in the car audio industry over the past few decades.

The Mighty Head Unit

Car Audio
By CZmarlin (Own work) [CC BY-SA 3.0], via Wikimedia Commons
Let’s see how far you want to go back. Mono FM radio? The 8-track? Perhaps a turntable under the dash of your 1960 Chrysler? Things have come a long way in source units and their features. We saw cassette players, the mini-disc (if only for a year) and even CD players come and go. We introduced digital media with MP3 files, then added WMA, WAV and – most recently – FLAC file playback. Soon, Master Quality Authenticated (MQA) will join the ranks.

The introduction and popularity of the Apple iPod signaled a massive change in the philosophy of music lovers. While this handy device could be considered the “nail in the coffin” for the record store industry, it launched new levels of convenience for music accessibility. The mobile electronics industry embraced the iPod, and now, support for it is standard on all mid- to high-level source units. Similar support for Android-based smartphones has also become almost a standard feature in the last few years.

Miniaturization and the advancement of computer processing have given us full-color touchscreen interfaces with fancy animated graphics. We can watch a DVD or digital media movie while having lunch in the car. Portable navigation systems have replaced paper maps to help us travel safely and more efficiently.

Car AudioRecently, we have introduced connected technology solutions. Internet connectivity is a feature in many new car radios, most often via your personal smartphone. Access to the Internet allows you to stream music from online resources like Google Play or iTunes Radio. Apple and Android have developed interfaces for their smartphones to enable drivers to send and receive text messages, make phone calls, select navigation destinations, and choose the music they want to listen to by just talking to the radio. CarPlay and Android Auto are the current “big thing” in multimedia source units.

Those Oh-so-fun Subwoofers!

Car Audio
The JL Audio TW5 is an example of advancements in subwoofer design.

What could you change when it comes to the design of a speaker? Materials for cones, suspensions, surrounds and motors haven’t advanced all that much, and because a subwoofer reproduces only low frequencies, things like cone materials don’t have a dramatic effect on performance. What has changed is our ability to model the behavior of the magnetic field within the speaker. Being able to optimize the geometry of the magnetic field allows designers to create subwoofers that are more efficient and that offer better performance with less distortion at high excursion levels.

The size and location of the subwoofer enclosures we use in our vehicles have become and more important. Back in the “good old days,” if you wanted big bass, you had to give up your trunk. Now, many subwoofers are designed to play nice and low in a very small and shallow enclosure. Using these subwoofers allows your installer to create compact solutions that will fit in a spare-tire well, the corner of your trunk or even in the footwell of some vehicles. We should be clear; there is a trade-off with these subs – they often require more power to produce the same output as a “conventional” subwoofer, but power is inexpensive these days.

Amplifiers, Smaller, More Power

Car Audio
200 watts that fits in the palm of your hand was unheard of in the past.

Power is cheap. You can buy a great-quality 1,000 watt subwoofer amplifier for around $500. Decades ago, a 1,000 watt amp was among the biggest amps available, and it cost several thousand dollars. That amp was also the size of a skateboard and consumed a lot of power. Modern amplifiers are much smaller and much more efficient, sound better and consume less power. A lot of people credit the increase in efficiency to Class D designs. While switching to Class D for many applications makes sense, there have been efficiency improvements thanks to being able to use small microcontrollers and high-tolerance components in a Class AB amp.

In the past few years, more and more companies have been offering amplifiers with built-in advanced signal processing. On the most basic of amplifiers, we have crossovers and bass boost circuits. More advanced amplifiers offer both high- and low-pass filters on the same channel for midbass and midrange applications. Some amplifiers even provide low-frequency signal restoration processing. A whole other class of amplifiers on the market has built-in DSP processing. Some are so advanced that they don’t have a single analog adjustment on them.

Signal Processing Moves To Digital

Years ago, signal processing meant you had an EQ and a crossover in your car. These in-dash processors were made popular by the 1/2-DIN equalizer – a 1×7-inch EQ that would mount in the dash above or below your radio. These little EQs offered as many as 11 bands of graphic equalization to let you “tune” your system. Some had subwoofer level controls and crossovers built in.

Car AudioThe next step in processing was the stand-alone processor – usually either an equalizer or a crossover, sometimes both. These were the size of a medium-sized hardcover book and gave installers much more precise control over system tuning. The drawback was their physical size. They took up a lot of room.

Almost all of these are gone now, replaced by stand-alone DSP processors. These seemingly magic black boxes replace those old stand-alone equalizers and crossovers, and include options like signal delay and the ability to switch between different settings at the flick of a switch.

Modern signal processing has allowed installers to use signal delays to optimize seemingly unconventional mounting locations for speakers to produce an amazingly accurate soundstage.

Speaker Placement Becomes Less Critical

In the past, if you wanted a great soundstage in your car, then you had to work with placement to equalize the difference in path lengths between the front speakers. Autosound competitors would go to great lengths to move seats as far back into the vehicle as possible, and some even built vehicles with a single seat located in the center. It was all somewhat silly because that effort never translated into value or performance for the consumer. All consumers could get were kick-panel–mounted speakers or a compression horn under the dash to aid in equalizing distances.

Car Audio
The factory speaker locations in this Audi can be utilized for great sound.

With the assistance of modern signal processing, installers can use factory locations, then delay the signal going to the closest speakers to put you in the center of them.

Another speaker location that has become popular is the A-pillar speaker pod. A nice midrange and tweeter up high and far forward in the vehicle can help create a deep and wide soundstage. The drawback with this approach is that it only works for one seat. If it is set up for the driver’s seat, the soundstage for the passenger seat is compressed into the right-side speaker location.

Very soon, the newest of processors will offer provisions to make every seat in the car sound great using an up-mixer and a center channel, just like the one in your home theater. Now, both front seats and even passengers in the rear can experience an even and focused soundstage across the dash of the vehicle.

Modern Speakers Refined

Like subwoofers, speakers haven’t changed dramatically since the first fixed-magnet, moving-coil speaker was created in 1925. Speakers have improved in efficiency and accuracy thanks to better materials for surrounds, better adhesives and dramatically better processes that help speaker manufacturers build more-consistent products. The real performance upgrades have come in the optimization of a speaker’s motor assembly with respect to the interaction between the voice coil and the magnetic field.

As a speaker cone moves in and out, the magnetic field strength varies. This causes distortion. The same goes for the suspension system: Being able to model the behavior of different surrounds and spiders allows designers to produce transducers that are more linear and, thus, create less distortion.

The Incredible Car Audio Evolution

Overall, the latest innovations and technologies have moved the mobile electronics industry to a point where the modern in-vehicle infotainment system performs at a level that could not be conceived of even a decade ago. If you want to find out about the latest technologies or products, drop into your local mobile electronics specialist. They would be happy to show you the latest and greatest offerings for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Subwoofer Enclosure Locations – Finding Space For Bass

Enclosure LocationsWhen it comes to bang-for-the-buck upgrades to any audio system, none can beat the dramatic difference of adding a subwoofer. Factory audio systems are getting pretty good at producing a soundstage in front of the listener, and they are EQed well enough not to be painful to enjoy – but one thing they all have in common is anemic, wimpy, thin and muddy bass response. Adding a quality subwoofer system can fix that.

What are optimal subwoofer system enclosure locations? If you think of the stereotypical car audio system, the subwoofer enclosure was usually something that took up most of the trunk or hatch area of the vehicle. You’d pop the trunk, and there would be just enough room for a knapsack or maybe a duffle bag. Did these systems sound great? Absolutely! Did they leave room for golf clubs, luggage or a keg of beer? Not a chance!

Subwoofers for Compact Enclosures

Enclosure LocationsLooking through recent photos of custom car audio installations will reveal that subwoofer enclosures no longer take up space they once did. Why is this? Companies that design and manufacture subwoofers are conscious of the need to provide amazing performance without taking up a lot of space. There are now dozens of subwoofers designed specifically to fit into very shallow locations – like behind or under the seat of a pickup truck. These same subwoofers are also designed to produce deep bass from minimal enclosure volume requirements.

When a company designs a speaker, they have to balance three basic performance criteria – low-frequency extension, efficiency and enclosure volume requirements. In general terms, you get to pick two, and the third will suffer. For a small enclosure driver, it’s often efficiency that takes a small hit. Regaining some of this reduction in output is credited to careful and thoughtful computer modeling and the use of stronger magnets and tighter tolerances withing the motor assembly of the subwoofer. Efficiency isn’t as important as it used to be – we have many high-power amplifiers that don’t cost an arm and a leg.

Conventional Enclosure Locations

Enclosure Locations
Custom enclosure and amplifier rack in SUV hatch.

If you drive a hatchback or SUV, a subwoofer sitting behind the rear seat is still very common. This location works quite well because the output of the subwoofer system is in the same listening environment as it would be in a sedan. Your installer may choose to face the subwoofer in almost any direction – rearward, forward, up or down. Firing the subwoofers down into the floor can act as a bit of a filter for high-frequency energy, so your midbass speakers have to be up to the challenge.

If you drive a sedan, your subwoofer system is probably at the back of the trunk against the rear seats – much like in hatchbacks or SUVs. Again, the direction in which the speaker points varies based on the system design and cosmetic layout. Firing the subwoofers forward provides room to mount amplifiers and processors on the rear of the enclosure.

Another popular application for sedans is to fire the subwoofers through the rear deck or ski pass-through between the seats. These techniques dramatically improve the midbass response from the subwoofer and ease the requirement for large midbass drivers in the front of the vehicle.

A Little Custom, A Little Fun

Working with unique locations can offer a dramatic increase in the available storage area in the vehicle. There are two classic locations for a custom subwoofer enclosure: in the spare tire well or the corner of the trunk or storage area.

Enclosure Locations
A creative installer can fit a surprising amount of equipment in a spare tire well, while leaving the trunk fully functional.

The spare tire well of many vehicles can offer an amazing amount of space for subwoofers. In many cases, a skilled installer can include your amplifiers and processors in that same space. Some thoughtful design and careful planning can leave you with your entire trunk available for cargo. You do need a plan for not having your spare tire with you – but the local auto service is always a phone call away.

Enclosure Locations
This SUV side enclosure takes up almost no usable space.

Building an enclosure in the corner of your trunk can offer excellent performance without a dramatic effect on available cargo space. Installers love to get creative with these enclosure designs. Classically, these enclosures have been molded to the vehicle with layers of fiberglass. Layered fiberglass construction offers excellent use of space, sometimes allowing for a larger subwoofer to be used with the same low-frequency performance, or even for a vented enclosure design. The drawback to fiberglass can be the time it takes for construction, and the smell. Fiberglass resin has a strong odor. It won’t last long, but that aspect is worth keeping in mind.

Another construction technique that is becoming more and more popular is stack-fab. The stack-fab process uses multiple layers of wood. Each is cut to fit the contour of the vehicle, then glued one on top of another until your installer has built up to the top of the desired space. Stack-fab construction can be quite efficient in terms of time. The enclosure is ready to go right away. There is no waiting for layers of fiberglass and resin to dry. Stack-fab isn’t as efficient on internal air space, but produces a very rigid and well-damped result.

Unique Applications and Solutions

Enclosure Locations
In many instances only an inch or two of legroom has to be given up to utilize a footwell enclosure.

What if your vehicle is a little more challenging than most? Say you have a small two-seater like a Miata or an NSX, but want great sound? There is no room behind the seat for anything. What’s an auto sound enthusiast to do? The passenger side footwell can be a great location for a subwoofer. A skilled installer can get a good-quality 8- or 10-inch subwoofer in there while leaving more than enough room for the passenger to sit comfortably in the vehicle.

Wherever you and your installer decide to place your subwoofer enclosure, the addition of good, solid low-frequency musical information will dramatically improve the overall performance of your mobile audio system. Search the Internet and join one of the many car audio groups on Facebook to gather ideas. Once you have a few thoughts, talk with the product specialist and installer at your local mobile electronics specialist retailer. No doubt, the result will be amazing!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

  • « Previous Page
  • 1
  • …
  • 10
  • 11
  • 12
  • 13
  • 14
  • …
  • 21
  • Next Page »

Recent Articles

Classic Car Audio

7 things to Consider When Improving Your Classic Car Audio

June 1, 2025 

You have worked long and hard to get your pride and joy rebuilt. The paint is buttery smooth, the engine purrs like a kitten, and the interior smells of fresh carpet and leather. … [Read More...]

DroneMobile XC Connected Dashcam Security System

Product Spotlight: DroneMobile XC Connected Dashcam Security System

May 26, 2025 

Thieves frequently target vehicles from Hyundai, Kia, Toyota, Lexus, RAM, Chevrolet, and Honda. These vehicles are often stolen for their parts or exported overseas. … [Read More...]

Compustar 2WG17 Remote Kit

Product Spotlight: Compustar 2WG17 Remote Kit

May 19, 2025 

Compustar was one of the first brands to allow consumers to choose a remote control package to accompany their remote start controller. Previously, we looked at flagship-level … [Read More...]

Factory Source Unit

To Get Better Sound, Do I Need to Replace My Factory Source Unit?

May 4, 2025 

Not all that long ago, upgrading the performance of your car audio system required that you replace the factory source unit. The industry had dozens of premium CD receivers with … [Read More...]

Testimonials

Very Friendly Staff

Very friendly staff, knowledgeable group . Needed help on my remote starter, they got me back up and running in no time . They also do amazing tint jobs!!

I recommend then to everyone!

Super great place to get lots of custom things done. Very nice, very knowledgeable and very fare prices. I recommend to everyone I know.

Will be going back for sure!

Very happy with how the tint came out. Professional and friendly. Will be going back for sure.

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location

55 Woodmont Road, Milford, CT 06460

Get Directions to Speed of Sound Technologies

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Custom Installation
  • Driver Safety
  • Radar/Laser Detectors
  • Remote Starters
  • Truck Accessories
  • Vehicle Security
  • Window Tint

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 6:00 pm
Saturday9:00 am – 5:00 pm

Closed
Sunday

Copyright © 2025 Speed of Sound Technologies · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...